Papers
Topics
Authors
Recent
2000 character limit reached

Entanglement Devised Barren Plateau Mitigation

Published 22 Dec 2020 in quant-ph | (2012.12658v1)

Abstract: Hybrid quantum-classical variational algorithms are one of the most propitious implementations of quantum computing on near-term devices, offering classical machine learning support to quantum scale solution spaces. However, numerous studies have demonstrated that the rate at which this space grows in qubit number could preclude learning in deep quantum circuits, a phenomenon known as barren plateaus. In this work, we implicate random entanglement as the source of barren plateaus and characterize them in terms of many-body entanglement dynamics, detailing their formation as a function of system size, circuit depth, and circuit connectivity. Using this comprehension of entanglement, we propose and demonstrate a number of barren plateau ameliorating techniques, including: initial partitioning of cost function and non-cost function registers, meta-learning of low-entanglement circuit initializations, selective inter-register interaction, entanglement regularization, the addition of Langevin noise, and rotation into preferred cost function eigenbases. We find that entanglement limiting, both automatic and engineered, is a hallmark of high-accuracy training, and emphasize that as learning is an iterative organization process while barren plateaus are a consequence of randomization, they are not necessarily unavoidable or inescapable. Our work forms both a theoretical characterization and a practical toolbox; first defining barren plateaus in terms of random entanglement and then employing this expertise to strategically combat them.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.