Papers
Topics
Authors
Recent
2000 character limit reached

Banach space representations of Drinfeld-Jimbo algebras and their complex-analytic forms (2012.12565v4)

Published 23 Dec 2020 in math.RT, math.FA, and math.QA

Abstract: We prove that every non-degenerate Banach space representation of the Drinfeld-Jimbo algebra $U_q(\mathfrak{g})$ of a semisimple complex Lie algebra $\mathfrak{g}$ is finite dimensional when $|q|\ne 1$. As a corollary, we find an explicit form of the Arens-Michael envelope of $U_q(\mathfrak{g})$, which is similar to that of $U(\mathfrak{g})$ obtained by Joseph Taylor in 70s. In the case when $\mathfrak{g}=\mathfrak{s}\mathfrak{l}2$, we also consider the representation theory of the corresponding analytic form $\widetilde U(\mathfrak{s}\mathfrak{l}_2)\hbar$ (with $e\hbar=q$) and show that it is simpler than for $U_q(\mathfrak{s}\mathfrak{l}2)$. For example, all irreducible continuous representations of $\widetilde U(\mathfrak{s}\mathfrak{l}_2)\hbar$ are finite dimensional for every admissible value of the complex parameter $\hbar$, while $U_q(\mathfrak{s}\mathfrak{l}_2)$ has a topologically irreducible infinite-dimensional representation when $|q|= 1$ and $q$ is not a root of unity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.