Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diabetic Retinopathy Grading System Based on Transfer Learning

Published 23 Dec 2020 in eess.IV, cs.CV, and cs.LG | (2012.12515v1)

Abstract: Much effort is being made by the researchers in order to detect and diagnose diabetic retinopathy (DR) accurately automatically. The disease is very dangerous as it can cause blindness suddenly if it is not continuously screened. Therefore, many computers aided diagnosis (CAD) systems have been developed to diagnose the various DR grades. Recently, many CAD systems based on deep learning (DL) methods have been adopted to get deep learning merits in diagnosing the pathological abnormalities of DR disease. In this paper, we present a full based-DL CAD system depending on multi-label classification. In the proposed DL CAD system, we present a customized efficientNet model in order to diagnose the early and advanced grades of the DR disease. Learning transfer is very useful in training small datasets. We utilized IDRiD dataset. It is a multi-label dataset. The experiments manifest that the proposed DL CAD system is robust, reliable, and deigns promising results in detecting and grading DR. The proposed system achieved accuracy (ACC) equals 86%, and the Dice similarity coefficient (DSC) equals 78.45.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.