Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Out-distribution aware Self-training in an Open World Setting (2012.12372v1)

Published 21 Dec 2020 in cs.LG and cs.CV

Abstract: Deep Learning heavily depends on large labeled datasets which limits further improvements. While unlabeled data is available in large amounts, in particular in image recognition, it does not fulfill the closed world assumption of semi-supervised learning that all unlabeled data are task-related. The goal of this paper is to leverage unlabeled data in an open world setting to further improve prediction performance. For this purpose, we introduce out-distribution aware self-training, which includes a careful sample selection strategy based on the confidence of the classifier. While normal self-training deteriorates prediction performance, our iterative scheme improves using up to 15 times the amount of originally labeled data. Moreover, our classifiers are by design out-distribution aware and can thus distinguish task-related inputs from unrelated ones.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.