Papers
Topics
Authors
Recent
2000 character limit reached

An algorithm for simulating Brownian increments on a sphere

Published 22 Dec 2020 in cond-mat.stat-mech, cs.NA, math.NA, and math.PR | (2012.12018v1)

Abstract: This paper presents a novel formula for the transition density of the Brownian motion on a sphere of any dimension and discusses an algorithm for the simulation of the increments of the spherical Brownian motion based on this formula. The formula for the density is derived from an observation that a suitably transformed radial process (with respect to the geodesic distance) can be identified as a Wright-Fisher diffusion process. Such processes satisfy a duality (a kind of symmetry) with a certain coalescent processes and this in turn yields a spectral representation of the transition density, which can be used for exact simulation of their increments using the results of Jenkins and Span`o (2017). The symmetry then yields the algorithm for the simulation of the increments of the Brownian motion on a sphere. We analyse the algorithm numerically and show that it remains stable when the time-step parameter is not too small.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.