Papers
Topics
Authors
Recent
2000 character limit reached

Sine-Gordon on a wormhole (2012.11141v2)

Published 21 Dec 2020 in math.AP, gr-qc, math-ph, math.MP, and nlin.SI

Abstract: In an attempt to understand the soliton resolution conjecture, we consider the Sine-Gordon equation on a spherically symmetric wormhole spacetime. We show that within each topological sector (indexed by a positive integer degree $n$) there exists a unique linearly stable soliton, which we call the $n$-kink. We give numerical evidence that the $n$-kink is a global attractor in the evolution of any smooth, finite energy solutions of degree $n$. When the radius of the wormhole throat $a$ is large enough, the convergence to the $n$-kink is shown to be governed by internal modes that slowly decay due to the resonant transfer of energy to radiation. We compute the exact asymptotics of this relaxation process for the $1$-kink using the Soffer-Weinstein weakly nonlinear perturbation theory.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.