Papers
Topics
Authors
Recent
2000 character limit reached

PPGN: Phrase-Guided Proposal Generation Network For Referring Expression Comprehension (2012.10890v1)

Published 20 Dec 2020 in cs.CV, cs.AI, and cs.MM

Abstract: Reference expression comprehension (REC) aims to find the location that the phrase refer to in a given image. Proposal generation and proposal representation are two effective techniques in many two-stage REC methods. However, most of the existing works only focus on proposal representation and neglect the importance of proposal generation. As a result, the low-quality proposals generated by these methods become the performance bottleneck in REC tasks. In this paper, we reconsider the problem of proposal generation, and propose a novel phrase-guided proposal generation network (PPGN). The main implementation principle of PPGN is refining visual features with text and generate proposals through regression. Experiments show that our method is effective and achieve SOTA performance in benchmark datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.