Papers
Topics
Authors
Recent
2000 character limit reached

Hedge Connectivity without Hedge Overlaps

Published 19 Dec 2020 in cs.DM and math.CO | (2012.10600v1)

Abstract: Connectivity is a central notion of graph theory and plays an important role in graph algorithm design and applications. With emerging new applications in networks, a new type of graph connectivity problem has been getting more attention--hedge connectivity. In this paper, we consider the model of hedge graphs without hedge overlaps, where edges are partitioned into subsets called hedges that fail together. The hedge connectivity of a graph is the minimum number of hedges whose removal disconnects the graph. This model is more general than the hypergraph, which brings new computational challenges. It has been a long open problem whether this problem is solvable in polynomial time. In this paper, we study the combinatorial properties of hedge graph connectivity without hedge overlaps, based on its extremal conditions as well as hedge contraction operations, which provide new insights into its algorithmic progress.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.