Papers
Topics
Authors
Recent
2000 character limit reached

On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization (2012.10469v2)

Published 18 Dec 2020 in math.OC, cs.LG, and stat.ML

Abstract: Convex optimization over the spectrahedron, i.e., the set of all real $n\times n$ positive semidefinite matrices with unit trace, has important applications in machine learning, signal processing and statistics, mainly as a convex relaxation for optimization problems with low-rank matrices. It is also one of the most prominent examples in the theory of first-order methods for convex optimization in which non-Euclidean methods can be significantly preferable to their Euclidean counterparts. In particular, the desirable choice is the Matrix Exponentiated Gradient (MEG) method which is based on the Bregman distance induced by the (negative) von Neumann entropy. Unfortunately, implementing MEG requires a full SVD computation on each iteration, which is not scalable to high-dimensional problems. In this work we propose an efficient implementations of MEG, both with deterministic and stochastic gradients, which are tailored for optimization with low-rank matrices, and only use a single low-rank SVD computation on each iteration. We also provide efficiently-computable certificates for the correct convergence of our methods. Mainly, we prove that under a strict complementarity condition, the suggested methods converge from a ``warm-start" initialization with similar rates to their full-SVD-based counterparts. Finally, we bring empirical experiments which both support our theoretical findings and demonstrate the practical appeal of our methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.