Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hierarchical Decentralized Reference Governor using Dynamic Constraint Tightening for Constrained Cascade Systems (2012.10250v1)

Published 18 Dec 2020 in math.OC

Abstract: This paper proposes a hierarchical decentralized reference governor for constrained cascade systems. The reference governor (RG) approach is reformulated in terms of receding horizon strategy such that a locally receding horizon optimization is obtained for each subsystem with a pre-established prediction horizon. The algorithm guarantees that not only the nominal overall closed-loop system without any constraint is recoverable but also the state and control constraints are satisfied in transient conditions. Also, considering unfeasible reference signals, the output of any subsystem goes locally to the nearest feasible value. The proposed dynamic constraint tightening strategy uses a receding horizon to reduce the conservatism of conventional robust RGs. Moreover, a decentralized implementation of the algorithms used to compute tightened constraints and output admissible sets is introduced that allow to deal with large scale systems. Furthermore, a set of dynamic constraints are presented to preserve recursive feasibility of distributed optimization problem. Feasibility, stability, convergence, and robust constraint satisfaction of the proposed algorithm are also demonstrated. The proposed approach is verified by simulating a system composed of three cascade jacketed continuous stirred tank reactors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube