Papers
Topics
Authors
Recent
2000 character limit reached

Global daily 1km land surface precipitation based on cloud cover-informed downscaling

Published 18 Dec 2020 in physics.ao-ph | (2012.10108v2)

Abstract: High-resolution climatic data are essential to many applications in environmental research. Here we develop a new semi-mechanistic downscaling approach for daily precipitation that incorporates high resolution (30 arc sec) satellite-derived cloud frequency. The downscaling algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. We apply the method to the ERA5 precipitation archive and MODIS monthly cloud cover frequency to develop a daily gridded precipitation time series in 1km resolution for the years 2003 onward. Comparison of the predictions with existing gridded products and station data indicates an improvement in the spatio-temporal performance of the downscaled data in predicting precipitation. Regional scrutiny of the cloud cover correction from a topographically highly heterogeneous area further confirms that CHELSA-EarthEnv performs well in comparison to other precipitation products such as numerical weather models. The presented CHELSA-EarthEnv daily precipitation product improves the temporal accuracy compared to ERA5 with an additional improved in spatial accuracy and much better representation of precipitation in complex terrain

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.