Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

One-level density of the family of twists of an elliptic curve over function fields (2012.09947v1)

Published 17 Dec 2020 in math.NT

Abstract: We fix an elliptic curve $E/\mathbb{F}_q(t)$ and consider the family ${E\otimes\chi_D}$ of $E$ twisted by quadratic Dirichlet characters. The one-level density of their $L$-functions is shown to follow orthogonal symmetry for test functions with Fourier transform supported inside $(-1,1)$. As an application, we obtain an upper bound of 3/2 on the average analytic rank. By splitting the family according to the sign of the functional equation, we obtain that at least $12.5\%$ of the family have rank zero, and at least $37.5\%$ have rank one. The Katz and Sarnak philosophy predicts that those percentages should both be $50\%$ and that the average analytic rank should be $1/2$. We finish by computing the one-level density of $E$ twisted by Dirichlet characters of order $\ell\neq 2$ coprime to $q$. We obtain a restriction of $(-1/2,1/2)$ on the support with a unitary symmetry.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.