Papers
Topics
Authors
Recent
2000 character limit reached

End-to-end Deep Object Tracking with Circular Loss Function for Rotated Bounding Box (2012.09771v1)

Published 17 Dec 2020 in cs.CV and cs.LG

Abstract: The task object tracking is vital in numerous applications such as autonomous driving, intelligent surveillance, robotics, etc. This task entails the assigning of a bounding box to an object in a video stream, given only the bounding box for that object on the first frame. In 2015, a new type of video object tracking (VOT) dataset was created that introduced rotated bounding boxes as an extension of axis-aligned ones. In this work, we introduce a novel end-to-end deep learning method based on the Transformer Multi-Head Attention architecture. We also present a new type of loss function, which takes into account the bounding box overlap and orientation. Our Deep Object Tracking model with Circular Loss Function (DOTCL) shows an considerable improvement in terms of robustness over current state-of-the-art end-to-end deep learning models. It also outperforms state-of-the-art object tracking methods on VOT2018 dataset in terms of expected average overlap (EAO) metric.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.