Papers
Topics
Authors
Recent
2000 character limit reached

Towards Grad-CAM Based Explainability in a Legal Text Processing Pipeline

Published 15 Dec 2020 in cs.HC | (2012.09603v1)

Abstract: Explainable AI(XAI)is a domain focused on providing interpretability and explainability of a decision-making process. In the domain of law, in addition to system and data transparency, it also requires the (legal-) decision-model transparency and the ability to understand the models inner working when arriving at the decision. This paper provides the first approaches to using a popular image processing technique, Grad-CAM, to showcase the explainability concept for legal texts. With the help of adapted Grad-CAM metrics, we show the interplay between the choice of embeddings, its consideration of contextual information, and their effect on downstream processing.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.