Papers
Topics
Authors
Recent
Search
2000 character limit reached

Universal separability criterion for arbitrary density matrices from causal properties of separable and entangled quantum states

Published 17 Dec 2020 in quant-ph, cond-mat.mes-hall, cond-mat.stat-mech, math-ph, and math.MP | (2012.09428v2)

Abstract: General physical background of Peres-Horodecki positive partial transpose (ppt-) separability criterion is revealed. Especially, the physical sense of partial transpose operation is shown to be equivalent to the "local causality reversal" (LCR-) procedure for all separable quantum systems or to the uncertainty in a global time arrow direction in all entangled cases. Using these universal causal considerations the heuristic causal separability criterion has been proposed for arbitrary $ D{N} \times D{N}$ density matrices acting in $ \mathcal{H}{D}{\otimes N} $ Hilbert spaces which describe the ensembles of $ N $ quantum systems of $ D $ eigenstates each. Resulting general formulas have been then analyzed for the widest special type of one-parametric density matrices of arbitrary dimensionality, which model equivalent quantum subsystems being equally connected (EC-) with each other by means of a single entnaglement parameter $ p $. In particular, for the family of such EC-density matrices it has been found that there exists a number of $ N $- and $ D $-dependent separability (or entanglement) thresholds $ p{th}(N,D) $ which in the case of a qubit-pair density matrix in $ \mathcal{H}{2} \otimes \mathcal{H}{2} $ Hilbert space are shown to reduce to well-known results obtained earlier by Peres [5] and Horodecki [6]. As the result, a number of remarkable features of the entanglement thresholds for EC-density matrices has been described for the first time. All novel results being obtained for the family of arbitrary EC-density matrices are shown to be applicable for a wide range of both interacting and non-interacting multi-partite quantum systems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated quantum many-body systems with the possibility of many-body localization, etc.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.