Papers
Topics
Authors
Recent
2000 character limit reached

Measuring Disentanglement: A Review of Metrics

Published 16 Dec 2020 in cs.LG and cs.AI | (2012.09276v3)

Abstract: Learning to disentangle and represent factors of variation in data is an important problem in AI. While many advances have been made to learn these representations, it is still unclear how to quantify disentanglement. While several metrics exist, little is known on their implicit assumptions, what they truly measure, and their limits. In consequence, it is difficult to interpret results when comparing different representations. In this work, we survey supervised disentanglement metrics and thoroughly analyze them. We propose a new taxonomy in which all metrics fall into one of three families: intervention-based, predictor-based and information-based. We conduct extensive experiments in which we isolate properties of disentangled representations, allowing stratified comparison along several axes. From our experiment results and analysis, we provide insights on relations between disentangled representation properties. Finally, we share guidelines on how to measure disentanglement.

Citations (76)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.