Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Crack propagation at the interface between viscoelastic and elastic materials (2012.09011v1)

Published 16 Dec 2020 in cond-mat.mtrl-sci

Abstract: Crack propagation in viscoelastic materials has been understood with the use of Barenblatt cohesive models by many authors since the 1970's. In polymers and metal creep, it is customary to assume that the relaxed modulus is zero, so that we have typically a crack speed which depends on some power of the stress intensity factor. Generally, when there is a finite relaxed modulus, it has been shown that the toughness increases between a value at very low speeds at a threshold toughness G0, to a very fast fracture value at Ginf, and that the enhancement factor in infinite systems (where the classical singular fracture mechanics field dominates) simply corresponds to the ratio of instantaneous to relaxed elastic moduli. Here, we apply a cohesive model for the case of a bimaterial interface between an elastic and a viscoelastic material, assuming the crack remains at the interface, and neglect the details of bimaterial singularity. For the case of a Maxwell material at low speeds the crack propagates with a speed which depends only on viscosity, and the fourth power of the stress intensity factor, and not on the elastic moduli of either material. For the Schapery type of power law material with no relaxation modulus, there are more general results. For arbitrary viscoelastic materials with nonzero relaxed modulus, we show that the maximum toughness enhancement will be reduced with respect to that of a classical viscoelastic crack in homogeneous material.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.