Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perturbation analysis of Mode III interfacial cracks advancing in a dilute heterogeneous material (1105.3497v2)

Published 17 May 2011 in math-ph and math.MP

Abstract: The paper addresses the problem of a Mode III interfacial crack advancing quasi-statically in a heterogeneous composite material, that is a two-phase material containing elastic inclusions, both soft and stiff, and defects, such as microcracks, rigid line inclusions and voids. It is assumed that the bonding between dissimilar elastic materials is weak so that the interface is a preferential path for the crack. The perturbation analysis is made possible by means of the fundamental solutions (symmetric and skew-symmetric weight functions) derived in Piccolroaz et al. (2009). We derive the dipole matrices of the defects in question and use the corresponding dipole fields to evaluate effective tractions along the crack faces and interface to describe the interaction between the main interfacial crack and the defects. For a stable propagation of the crack, the perturbation of the stress intensity factor induced by the defects is then balanced by the elongation of the crack along the interface, thus giving an explicit asymptotic formula for the calculation of the crack advance. The method is general and applicable to interfacial cracks with general distributed loading on the crack faces, taking into account possible asymmetry in the boundary conditions. The analytical results are used to analyse the shielding and amplification effects of various types of defects in different configurations. Numerical computations based on the explicit analytical formulae allows for the analysis of crack propagation and arrest.

Summary

We haven't generated a summary for this paper yet.