Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An information-theoretic framework to measure the dynamic interaction between neural spike trains (2012.08667v1)

Published 15 Dec 2020 in q-bio.NC

Abstract: Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynamically between two point processes X and Y as the sum of the dynamic mutual information (dMI) between the histories of X and Y, plus the transfer entropy (TE) along the directions X->Y and Y->X. Building on recent work which derived theoretical expressions and consistent estimators for the TE in continuous time, we develop algorithms for estimating efficiently all measures in our framework through nearest neighbor statistics. These algorithms are validated in simulations of independent and coupled spike train processes, showing the accuracy of dMI and TE in the assessment of undirected and directed interactions even for weakly coupled and short realizations, and proving the superiority of the continuous-time estimator over the discrete-time method. Then, the usefulness of the framework is illustrated in a real data scenario of recordings from in-vitro preparations of spontaneously-growing cultures of cortical neurons, where we show the ability of dMI and TE to identify how the networks of undirected and directed spike train interactions change their topology through maturation of the neuronal cultures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube