Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A generalized Hartle-Hawking wavefunction (2012.08603v2)

Published 15 Dec 2020 in gr-qc

Abstract: The Hartle-Hawking wave function is known to be the Fourier dual of the Chern-Simons or Kodama state reduced to mini-superspace, using an integration contour covering the whole real line. But since the Chern-Simons state is a general solution of the Hamiltonian constraint (with a given ordering), its Fourier dual should provide the general solution (i.e. beyond mini-superspace) of the Wheeler DeWitt equation representing the Hamiltonian constraint in the metric representation. We write down a formal expression for such a wave function, to be seen as the generalization beyond mini-superspace of the Hartle-Hawking wave function. Its explicit evaluation (or simplification) depends only on the symmetries of the problem, and we illustrate the procedure with anisotropic Bianchi models and with the Kantowski-Sachs model. A significant difference of this approach is that we may leave the torsion inside the wave functions when we set up the ansatz for the connection, rather than setting it to zero before quantization. This allows for quantum fluctuations in the torsion, with far reaching consequences.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube