Papers
Topics
Authors
Recent
2000 character limit reached

WDNet: Watermark-Decomposition Network for Visible Watermark Removal

Published 14 Dec 2020 in cs.CV and eess.IV | (2012.07616v2)

Abstract: Visible watermarks are widely-used in images to protect copyright ownership. Analyzing watermark removal helps to reinforce the anti-attack techniques in an adversarial way. Current removal methods normally leverage image-to-image translation techniques. Nevertheless, the uncertainty of the size, shape, color and transparency of the watermarks set a huge barrier for these methods. To combat this, we combine traditional watermarked image decomposition into a two-stage generator, called Watermark-Decomposition Network (WDNet), where the first stage predicts a rough decomposition from the whole watermarked image and the second stage specifically centers on the watermarked area to refine the removal results. The decomposition formulation enables WDNet to separate watermarks from the images rather than simply removing them. We further show that these separated watermarks can serve as extra nutrients for building a larger training dataset and further improving removal performance. Besides, we construct a large-scale dataset named CLWD, which mainly contains colored watermarks, to fill the vacuum of colored watermark removal dataset. Extensive experiments on the public gray-scale dataset LVW and CLWD consistently show that the proposed WDNet outperforms the state-of-the-art approaches both in accuracy and efficiency. The code and CLWD dataset are publicly available at https://github.com/MRUIL/WDNet.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.