Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting BERT to improve aspect-based sentiment analysis performance on Persian language

Published 2 Dec 2020 in cs.CL | (2012.07510v1)

Abstract: Aspect-based sentiment analysis (ABSA) is a more detailed task in sentiment analysis, by identifying opinion polarity toward a certain aspect in a text. This method is attracting more attention from the community, due to the fact that it provides more thorough and useful information. However, there are few language-specific researches on Persian language. The present research aims to improve the ABSA on the Persian Pars-ABSA dataset. This research shows the potential of using pre-trained BERT model and taking advantage of using sentence-pair input on an ABSA task. The results indicate that employing Pars-BERT pre-trained model along with natural language inference auxiliary sentence (NLI-M) could boost the ABSA task accuracy up to 91% which is 5.5% (absolute) higher than state-of-the-art studies on Pars-ABSA dataset.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.