Ergodicity of the Martin boundary of the Young--Fibonacci graph. I (2012.07447v3)
Abstract: Among central measures on the path space of the Young--Fibonacci lattice the so-called Plancherel measure has a special role. Its ergodicity was proved by Kerov and Gnedin. The goal of this cycle of two articles is to prove that remaining measures from the Martin boundary of this graph (which were described by Kerov and Goodman) are also ergodic. The measures are parametrized with an infinite word of digits 1 and 2 and the parameter $\beta\in(0,1]$ (the case $\beta=0$ corresponds to the Plancherel measure). In this article we prove the statements which correspond to the case $\beta=1$.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.