Papers
Topics
Authors
Recent
2000 character limit reached

Degeneration of curves on some polarized toric surfaces

Published 12 Dec 2020 in math.AG | (2012.06766v3)

Abstract: We address the following question: Given a polarized toric surface (S,L), and a general integral curve C of geometric genus g in the linear system |L|, do there exist degenerations of C in |L| to general integral curves of smaller geometric genera? We give an affirmative answer to this question for surfaces associated to h-transverse polygons, provided that the characteristic of the ground field is large enough. We give examples of surfaces in small characteristic, for which the answer to the question is negative. In case the answer is affirmative, we deduce that a general curve C as above is nodal. In characteristic 0, we use the result to show irreducibility of Severi varieties of a large class of polarized toric surfaces with h-transverse polygon.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.