Understanding Spectral Graph Neural Network (2012.06660v4)
Abstract: Graph neural networks have developed by leaps and bounds in recent years due to the restriction of traditional convolutional filters on non-Euclidean structured data. Spectral graph theory mainly studies fundamental graph properties using algebraic methods to analyze the spectrum of the adjacency matrix or Laplacian matrix of a graph, which lays the foundation of graph convolutional neural networks. This report is more than notes and self-contained which comes from my Ph.D. first-year report literature review part, it illustrates how the graph convolutional neural network model is motivated by spectral graph theory, and discusses the major spectral-based models associated with their fundamentals. The practical applications of the graph convolutional neural networks defined in the spectral domain are also reviewed.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.