Papers
Topics
Authors
Recent
2000 character limit reached

One can hear the corners of a drum (2012.06465v1)

Published 11 Dec 2020 in math.SP, math-ph, math.AP, math.DG, and math.MP

Abstract: We prove that the presence or absence of corners is spectrally determined in the following sense: any simply connected domain with piecewise smooth Lipschitz boundary cannot be isospectral to any connected domain, of any genus, which has smooth boundary. Moreover, we prove that amongst all domains with Lipschitz, piecewise smooth boundary and fixed genus, the presence or absence of corners is uniquely determined by the spectrum. This means that corners are an elementary geometric spectral invariant; one can hear corners.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.