Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayes posterior convergence for loss functions via almost additive Thermodynamic Formalism (2012.05601v2)

Published 10 Dec 2020 in math.ST, math.DS, math.PR, and stat.TH

Abstract: Statistical inference can be seen as information processing involving input information and output information that updates belief about some unknown parameters. We consider the Bayesian framework for making inferences about dynamical systems from ergodic observations, where the Bayesian procedure is based on the Gibbs posterior inference, a decision process generalization of standard Bayesian inference where the likelihood is replaced by the exponential of a loss function. In the case of direct observation and almost-additive loss functions, we prove an exponential convergence of the a posteriori measures a limit measure. Our estimates on the Bayes posterior convergence for direct observation are related and extend those in a paper by K. McGoff, S. Mukherjee and A. Nobel. Our approach makes use of non-additive thermodynamic formalism and large deviation properties instead of joinings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.