Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Context-dependent Ranking and Selection under a Bayesian Framework (2012.05577v2)

Published 10 Dec 2020 in stat.ME

Abstract: We consider a context-dependent ranking and selection problem. The best design is not universal but depends on the contexts. Under a Bayesian framework, we develop a dynamic sampling scheme for context-dependent optimization (DSCO) to efficiently learn and select the best designs in all contexts. The proposed sampling scheme is proved to be consistent. Numerical experiments show that the proposed sampling scheme significantly improves the efficiency in context-dependent ranking and selection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.