Papers
Topics
Authors
Recent
Search
2000 character limit reached

MetaInfoNet: Learning Task-Guided Information for Sample Reweighting

Published 9 Dec 2020 in cs.LG and cs.CV | (2012.05273v1)

Abstract: Deep neural networks have been shown to easily overfit to biased training data with label noise or class imbalance. Meta-learning algorithms are commonly designed to alleviate this issue in the form of sample reweighting, by learning a meta weighting network that takes training losses as inputs to generate sample weights. In this paper, we advocate that choosing proper inputs for the meta weighting network is crucial for desired sample weights in a specific task, while training loss is not always the correct answer. In view of this, we propose a novel meta-learning algorithm, MetaInfoNet, which automatically learns effective representations as inputs for the meta weighting network by emphasizing task-related information with an information bottleneck strategy. Extensive experimental results on benchmark datasets with label noise or class imbalance validate that MetaInfoNet is superior to many state-of-the-art methods.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.