Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAMPVIS: Towards a New Methodology for Developing Visualisation Capabilities for Large-scale Emergency Responses (2012.04757v1)

Published 8 Dec 2020 in cs.HC

Abstract: The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support emergency responses under difficult operational conditions. In this paper, we report the experience of a group of VIS volunteers who have been working in a large research and development consortium and providing VIS support to various observational, analytical, model-developmental and disseminative tasks. In particular, we describe our approaches to the challenges that we have encountered in requirements analysis, data acquisition, visual design, software design, system development, team organisation, and resource planning. By reflecting on our experience, we propose a set of recommendations as the first step towards a methodology for developing and providing rapid VIS capacities to support emergency responses.

Citations (6)

Summary

We haven't generated a summary for this paper yet.