Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Machine Learning and Human Experts to Predict Match Outcomes in Football: A Baseline Model (2012.04380v1)

Published 8 Dec 2020 in cs.CL and cs.AI

Abstract: In this paper, we present a new application-focused benchmark dataset and results from a set of baseline Natural Language Processing and Machine Learning models for prediction of match outcomes for games of football (soccer). By doing so we give a baseline for the prediction accuracy that can be achieved exploiting both statistical match data and contextual articles from human sports journalists. Our dataset is focuses on a representative time-period over 6 seasons of the English Premier League, and includes newspaper match previews from The Guardian. The models presented in this paper achieve an accuracy of 63.18% showing a 6.9% boost on the traditional statistical methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.