Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Source Separation and Depthwise Separable Convolutions for Computer Audition (2012.03359v1)

Published 6 Dec 2020 in cs.SD, cs.LG, and eess.AS

Abstract: Given recent advances in deep music source separation, we propose a feature representation method that combines source separation with a state-of-the-art representation learning technique that is suitably repurposed for computer audition (i.e. machine listening). We train a depthwise separable convolutional neural network on a challenging electronic dance music (EDM) data set and compare its performance to convolutional neural networks operating on both source separated and standard spectrograms. It is shown that source separation improves classification performance in a limited-data setting compared to the standard single spectrogram approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.