Papers
Topics
Authors
Recent
2000 character limit reached

Constructing trading strategy ensembles by classifying market states

Published 5 Dec 2020 in q-fin.TR | (2012.03078v1)

Abstract: Rather than directly predicting future prices or returns, we follow a more recent trend in asset management and classify the state of a market based on labels. We use numerous standard labels and even construct our own ones. The labels rely on future data to be calculated, and can be used a target for training a market state classifier using an appropriate set of market features, e.g. moving averages. The construction of those features relies on their label separation power. Only a set of reasonable distinct features can approximate the labels. For each label we use a specific neural network to classify the state using the market features from our feature space. Each classifier gives a probability to buy or to sell and combining all their recommendations (here only done in a linear way) results in what we call a trading strategy. There are many such strategies and some of them are somewhat dubious and misleading. We construct our own metric based on past returns but penalising for a low number of transactions or small capital involvement. Only top score-performance-wise trading strategies end up in final ensembles. Using the Bitcoin market we show that the strategy ensembles outperform both in returns and risk-adjusted returns in the out-of-sample period. Even more so we demonstrate that there is a clear correlation between the success achieved in the past (if measured in our custom metric) and the future.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.