Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bidirectional recurrent neural networks for seismic event detection (2012.03009v1)

Published 5 Dec 2020 in physics.geo-ph, cs.AI, and cs.LG

Abstract: Real time, accurate passive seismic event detection is a critical safety measure across a range of monitoring applications from reservoir stability to carbon storage to volcanic tremor detection. The most common detection procedure remains the Short-Term-Average to Long-Term-Average (STA/LTA) trigger despite its common pitfalls of requiring a signal-to-noise ratio greater than one and being highly sensitive to the trigger parameters. Whilst numerous alternatives have been proposed, they often are tailored to a specific monitoring setting and therefore cannot be globally applied, or they are too computationally expensive therefore cannot be run real time. This work introduces a deep learning approach to event detection that is an alternative to the STA/LTA trigger. A bi-directional, long-short-term memory, neural network is trained solely on synthetic traces. Evaluated on synthetic and field data, the neural network approach significantly outperforms the STA/LTA trigger both on the number of correctly detected arrivals as well as on reducing the number of falsely detected events. Its real time applicability is proven with 600 traces processed in real time on a single processing unit.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.