Papers
Topics
Authors
Recent
2000 character limit reached

Latent function-on-scalar regression models for observed sequences of binary data: a restricted likelihood approach

Published 4 Dec 2020 in stat.ME, math.ST, and stat.TH | (2012.02635v1)

Abstract: In this paper, we study a functional regression setting where the random response curve is unobserved, and only its dichotomized version observed at a sequence of correlated binary data is available. We propose a practical computational framework for maximum likelihood analysis via the parameter expansion technique. Compared to existing methods, our proposal relies on the use of a complete data likelihood, with the advantage of being able to handle non-equally spaced and missing observations effectively. The proposed method is used in the Function-on-Scalar regression setting, with the latent response variable being a Gaussian random element taking values in a separable Hilbert space. Smooth estimations of functional regression coefficients and principal components are provided by introducing an adaptive MCEM algorithm that circumvents selecting the smoothing parameters. Finally, the performance of our novel method is demonstrated by various simulation studies and on a real case study. The proposed method is implemented in the R package dfrr.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.