Papers
Topics
Authors
Recent
2000 character limit reached

Saturated $k$-Plane Drawings with Few Edges

Published 3 Dec 2020 in cs.CG and cs.DM | (2012.02281v4)

Abstract: A drawing of a graph is $k$-plane if no edge is crossed more than $k$ times. In this paper we study saturated $k$-plane drawings with few edges. This are $k$-plane drawings in which no edge can be added without violating $k$-planarity. For every number of vertices $n>k+1$, we present a tight construction with $\frac{n-1}{k+1}$ edges for the case in which the edges can self-intersect. If we restrict the drawings to be $\ell$-simple we show that the number of edges in saturated $k$-plane drawings must be higher. We present constructions with few edges for different values of $k$ and $\ell$. Finally, we investigate saturated straight-line $k$-plane drawings.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.