Distributed Thompson Sampling
Abstract: We study a cooperative multi-agent multi-armed bandits with M agents and K arms. The goal of the agents is to minimized the cumulative regret. We adapt a traditional Thompson Sampling algoirthm under the distributed setting. However, with agent's ability to communicate, we note that communication may further reduce the upper bound of the regret for a distributed Thompson Sampling approach. To further improve the performance of distributed Thompson Sampling, we propose a distributed Elimination based Thompson Sampling algorithm that allow the agents to learn collaboratively. We analyse the algorithm under Bernoulli reward and derived a problem dependent upper bound on the cumulative regret.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.