Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Thompson Sampling

Published 3 Dec 2020 in cs.AI and cs.LG | (2012.01789v2)

Abstract: We study a cooperative multi-agent multi-armed bandits with M agents and K arms. The goal of the agents is to minimized the cumulative regret. We adapt a traditional Thompson Sampling algoirthm under the distributed setting. However, with agent's ability to communicate, we note that communication may further reduce the upper bound of the regret for a distributed Thompson Sampling approach. To further improve the performance of distributed Thompson Sampling, we propose a distributed Elimination based Thompson Sampling algorithm that allow the agents to learn collaboratively. We analyse the algorithm under Bernoulli reward and derived a problem dependent upper bound on the cumulative regret.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.