Optimal labelling schemes for adjacency, comparability, and reachability
Abstract: We construct asymptotically optimal adjacency labelling schemes for every hereditary class containing $2{\Omega(n2)}$ $n$-vertex graphs as $n\to \infty$. This regime contains many classes of interest, for instance perfect graphs or comparability graphs, for which we obtain an adjacency labelling scheme with labels of $n/4+o(n)$ bits per vertex. This implies the existence of a reachability labelling scheme for digraphs with labels of $n/4+o(n)$ bits per vertex and comparability labelling scheme for posets with labels of $n/4+o(n)$ bits per element. All these results are best possible, up to the lower order term.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.