Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Going Beyond Classification Accuracy Metrics in Model Compression (2012.01604v2)

Published 3 Dec 2020 in cs.CV, cs.AI, and cs.LG

Abstract: With the rise in edge-computing devices, there has been an increasing demand to deploy energy and resource-efficient models. A large body of research has been devoted to developing methods that can reduce the size of the model considerably without affecting the standard metrics such as top-1 accuracy. However, these pruning approaches tend to result in a significant mismatch in other metrics such as fairness across classes and explainability. To combat such misalignment, we propose a novel multi-part loss function inspired by the knowledge-distillation literature. Through extensive experiments, we demonstrate the effectiveness of our approach across different compression algorithms, architectures, tasks as well as datasets. In particular, we obtain up to $4.1\times$ reduction in the number of prediction mismatches between the compressed and reference models, and up to $5.7\times$ in cases where the reference model makes the correct prediction; all while making no changes to the compression algorithm, and minor modifications to the loss function. Furthermore, we demonstrate how inducing simple alignment between the predictions of the models naturally improves the alignment on other metrics including fairness and attributions. Our framework can thus serve as a simple plug-and-play component for compression algorithms in the future.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.