Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Uncertainty from Deep Learning for Trustworthy Materials Discovery Workflows (2012.01478v2)

Published 2 Dec 2020 in cond-mat.mtrl-sci, cs.CV, cs.LG, and physics.app-ph

Abstract: In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning based materials applications workflows. First, we show that by leveraging predictive uncertainty, a user can determine the required training data set size necessary to achieve a certain classification accuracy. Next, we propose uncertainty guided decision referral to detect and refrain from making decisions on confusing samples. Finally, we show that predictive uncertainty can also be used to detect out-of-distribution test samples. We find that this scheme is accurate enough to detect a wide range of real-world shifts in data, e.g., changes in the image acquisition conditions or changes in the synthesis conditions. Using microstructure information from scanning electron microscope (SEM) images as an example use case, we show that leveraging uncertainty-aware deep learning can significantly improve the performance and dependability of classification models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.