Papers
Topics
Authors
Recent
Search
2000 character limit reached

Performance of Particle Tracking Using a Quantum Graph Neural Network

Published 2 Dec 2020 in quant-ph | (2012.01379v2)

Abstract: The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC. This increase in luminosity, will yield many more detector hits (occupancy), and thus measurements will pose a challenge to track reconstruction algorithms being responsible to determine particle trajectories from those hits. This work explores the possibility of converting a novel Graph Neural Network model, that proven itself for the track reconstruction task, to a Hybrid Graph Neural Network in order to benefit the exponentially growing Hilbert Space. Several Parametrized Quantum Circuits (PQC) are tested and their performance against the classical approach is compared. We show that the hybrid model can perform similar to the classical approach. We also present a future road map to further increase the performance of the current hybrid model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.