Papers
Topics
Authors
Recent
2000 character limit reached

Most big mapping class groups fail the Tits Alternative (2012.01310v1)

Published 2 Dec 2020 in math.GR

Abstract: Let $X$ be a surface, possibly with boundary. Suppose it has infinite genus or infinitely many punctures, or a closed subset which is a disk with a Cantor set removed from its interior. For example, $X$ could be any surface of infinite type with only finitely many boundary components. We prove that the mapping class group of $X$ does not satisfy the Tits Alternative. That is, Map$(X)$ contains a finitely generated subgroup that is not virtually solvable and contains no nonabelian free group.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.