Papers
Topics
Authors
Recent
2000 character limit reached

From One to All: Learning to Match Heterogeneous and Partially Overlapped Graphs

Published 2 Dec 2020 in cs.LG | (2012.01252v3)

Abstract: Recent years have witnessed a flurry of research activity in graph matching, which aims at finding the correspondence of nodes across two graphs and lies at the heart of many artificial intelligence applications. However, matching heterogeneous graphs with partial overlap remains a challenging problem in real-world applications. This paper proposes the first practical learning-to-match method to meet this challenge. The proposed unsupervised method adopts a novel partial OT paradigm to learn a transport plan and node embeddings simultaneously. In a from-one-to-all manner, the entire learning procedure is decomposed into a series of easy-to-solve sub-procedures, each of which only handles the alignment of a single type of nodes. A mechanism for searching the transport mass is also proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art graph matching methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.