Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Feature Pyramid Networks for Object Detection (2012.00779v2)

Published 1 Dec 2020 in cs.CV

Abstract: Feature pyramid network (FPN) is a critical component in modern object detection frameworks. The performance gain in most of the existing FPN variants is mainly attributed to the increase of computational burden. An attempt to enhance the FPN is enriching the spatial information by expanding the receptive fields, which is promising to largely improve the detection accuracy. In this paper, we first investigate how expanding the receptive fields affect the accuracy and computational costs of FPN. We explore a baseline model called inception FPN in which each lateral connection contains convolution filters with different kernel sizes. Moreover, we point out that not all objects need such a complicated calculation and propose a new dynamic FPN (DyFPN). The output features of DyFPN will be calculated by using the adaptively selected branch according to a dynamic gating operation. Therefore, the proposed method can provide a more efficient dynamic inference for achieving a better trade-off between accuracy and computational cost. Extensive experiments conducted on MS-COCO benchmark demonstrate that the proposed DyFPN significantly improves performance with the optimal allocation of computation resources. For instance, replacing inception FPN with DyFPN reduces about 40% of its FLOPs while maintaining similar high performance.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.