Papers
Topics
Authors
Recent
2000 character limit reached

Lectures on Hausdorff and Gromov-Hausdorff Distance Geometry (2012.00756v1)

Published 1 Dec 2020 in math.MG

Abstract: The course was given at Peking University, Fall 2019. We discuss the following subjects: (1) Introduction to general topology, hyperspaces, metric and pseudometric spaces, graph theory. (2) Graphs in metric spaces, minimum spanning tree, Steiner minimal tree, Gromov minimal filling. (3) Hausdorff distance, Vietoris topology, Limits theory, inheritance of completeness, total boundedness, compactness by hyperspaces. (4) Gromov-Hausdorff distance, triangle inequality, positive definiteness for isometry classes of compact spaces, counterexample for boundedly compact spaces. (5) Gromov-Hausdorff distance for separable spaces in terms of their isometric images in \ell_\infty, correspondences, Gromov-Hausdorff distance in terms of correspondences. (6) Epsilon-isometries and Gromov-Hausdorff distance. (7) Irreducible correspondences and Gromov-Hausdorff distance. (8) Gromov-Hausdorff convergence, inheritance of metric and topological properties while Gromov-Hausdorff convergence. (9) Gromov-Hausdorff space (GH-space), optimal correspondences, existence of closed optimal correspondences for compact metric spaces, GH-space is geodesic. (10) Cover number, packing number, total boundedness, completeness, and separability of GH-space. (11) mst-spectrum in terms of GH-distances to simplexes, Steiner problem in GH-space. (12) GH-distance to simplexes with more points, GH-distance to simplexes with at most the same number of points. (13) Generalized Borsuk problem, solution of Generalized Borsuk problem in terms of GH-distances, clique covering number and chromatic number of simple graphs, their dualities, calculating these numbers in terms of GH-distances.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.