Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mixed precision matrix interpolative decompositions for model reduction (2012.00706v2)

Published 1 Dec 2020 in math.NA, cs.NA, and physics.comp-ph

Abstract: Renewed interest in mixed-precision algorithms has emerged due to growing data capacity and bandwidth concerns, as well as the advancement of GPUs, which enable significant speedup for low precision arithmetic. In light of this, we propose a mixed-precision algorithm to generate a double-precision accurate matrix interpolative decomposition approximation under a given set of criteria. Though low precision arithmetic suffers from quicker accumulation of round-off error, for many data-rich applications we nevertheless attain viable approximation accuracy, as the error incurred using low precision arithmetic is dominated by the error inherent to low-rank approximation. We then conduct several simulated numerical tests to demonstrate the efficacy of the algorithms and the corresponding error estimates. Finally, we present the application of our algorithms to a problem in model reduction for particle-laden turbulent flow.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.