Papers
Topics
Authors
Recent
2000 character limit reached

Multi-level Knowledge Distillation via Knowledge Alignment and Correlation

Published 1 Dec 2020 in cs.CV | (2012.00573v2)

Abstract: Knowledge distillation (KD) has become an important technique for model compression and knowledge transfer. In this work, we first perform a comprehensive analysis of the knowledge transferred by different KD methods. We demonstrate that traditional KD methods, which minimize the KL divergence of softmax outputs between networks, are related to the knowledge alignment of an individual sample only. Meanwhile, recent contrastive learning-based KD methods mainly transfer relational knowledge between different samples, namely, knowledge correlation. While it is important to transfer the full knowledge from teacher to student, we introduce the Multi-level Knowledge Distillation (MLKD) by effectively considering both knowledge alignment and correlation. MLKD is task-agnostic and model-agnostic, and can easily transfer knowledge from supervised or self-supervised pretrained teachers. We show that MLKD can improve the reliability and transferability of learned representations. Experiments demonstrate that MLKD outperforms other state-of-the-art methods on a large number of experimental settings including different (a) pretraining strategies (b) network architectures (c) datasets (d) tasks.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.