Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Entanglement Structure Detection via Machine Learning (2012.00526v2)

Published 1 Dec 2020 in quant-ph

Abstract: Detecting the entanglement structure, such as intactness and depth, of an n-qubit state is important for understanding the imperfectness of the state preparation in experiments. However, identifying such structure usually requires an exponential number of local measurements. In this letter, we propose an efficient machine learning based approach for predicting the entanglement intactness and depth simultaneously. The generalization ability of this classifier has been convincingly proved, as it can precisely distinguish the whole range of pure generalized GHZ states which never exist in the training process. In particular, the learned classifier can discover the entanglement intactness and depth bounds for the noised GHZ state, for which the exact bounds are only partially known.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube