Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Systematically Exploring Redundancy Reduction in Summarizing Long Documents (2012.00052v1)

Published 30 Nov 2020 in cs.CL

Abstract: Our analysis of large summarization datasets indicates that redundancy is a very serious problem when summarizing long documents. Yet, redundancy reduction has not been thoroughly investigated in neural summarization. In this work, we systematically explore and compare different ways to deal with redundancy when summarizing long documents. Specifically, we organize the existing methods into categories based on when and how the redundancy is considered. Then, in the context of these categories, we propose three additional methods balancing non-redundancy and importance in a general and flexible way. In a series of experiments, we show that our proposed methods achieve the state-of-the-art with respect to ROUGE scores on two scientific paper datasets, Pubmed and arXiv, while reducing redundancy significantly.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.