Papers
Topics
Authors
Recent
2000 character limit reached

Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning

Published 29 Nov 2020 in cs.LG and cs.AI | (2011.14266v3)

Abstract: Thompson sampling (TS) has emerged as a robust technique for contextual bandit problems. However, TS requires posterior inference and optimization for action generation, prohibiting its use in many online platforms where latency and ease of deployment are of concern. We operationalize TS by proposing a novel imitation-learning-based algorithm that distills a TS policy into an explicit policy representation, allowing fast decision-making and easy deployment in mobile and server-based environments. Using batched data collected under the imitation policy, our algorithm iteratively performs offline updates to the TS policy, and learns a new explicit policy representation to imitate it. Empirically, our imitation policy achieves performance comparable to batch TS while allowing more than an order of magnitude reduction in decision-time latency. Buoyed by low latency and simplicity of implementation, our algorithm has been successfully deployed in multiple video upload systems for Meta. Using a randomized controlled trial, we show our algorithm resulted in significant improvements in video quality and watch time.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.